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Abstract— The paper presents a generic approach, which can
be used assess the quality of appearance models of the brain.
Moreover, this approach is capable of assessing and compar-
ing different non-rigid registration (NRR) algorithms without
exploiting any form of ground truth. We base this approach
on the observation that a statistical appearance model can be
constructed from a set of non-rigidly registered images. A model
can be evaluated by comparing images generated by it with the
image set from which it was constructed. The quality of the
model depends on the quality of its seminal registration. This
also means that registration can be evaluated by constructing
and evaluating models. Indices are derived which reflect on model
specificity and generalisation. We show that these are surrogates
of Shannon’s entropy, which can directly be used to assess NRR.
All of these measures are negatively affected as a set of correctly
registered images is progressively perturbed. We compare our
results against those which were obtained using overlap-based
NRR assessment, which is based on ground truth anatomical
labels. Finally, to demonstrate the practicality of these methods,
different registration algorithms are compared in terms of their
performance.

Index Terms— Non-rigid registration, ground-truth valida-
tion, registration assessment, appearance models, correspondence
problem, minimum description length (MDL), Shannon’s en-
tropy.

I. I NTRODUCTION

NON-rigid registration is ubiquitously used as a basis for
medical image analysis. Its applications include atlas

matching, analysis of change [7], and structural analysis. A
variety of approaches to NRR exist and they differ in terms of
the objective function that defines mis-registration, the repre-
sentation of spatial deformation fields, and the approach used
to minimize mis-registration by selecting good deformations.
Ideally, a composition of aggregated deoformations should
bring a set of images into full alignment, which means that
corresponding strutctures across those images overlap.

Most commonly, pairs of images are being registered [24] at
any one time, though groups can be considered too [5]. In the
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former case, NRR is applied to just two images in isolation,
whereas in the latter case, all the different images are handled
simultaneously. This has real merits as, given a couple of very
dissimilar images, the set as a whole can compensate, making
its contribution in the form of additional information.

This under-constrained problem suffers from subjectivity in
its solution, which comprises the set of spatial deformations.
For any set of images to be registered, different approaches
are likely to produce different results. The different objective
functions have different minima, which is in direct effect of
the way they define image similarity.

One obvious way to assessing a given solution is by making
use of the ground truth solution. This idea is based on the
principle that any solution can – in one way or another –
be numerically evaluated in terms of divergence from the
correct solution. Several methods have been demonstrated,
which work along these lines [10], [12], [20], [18]. These
methods, however, require access to some form of ground
truth, which is difficult to obtain. One approach involves the
construction of artificial test data, which limits application to
’off-line’ evaluation. That method also relies on conditions
which are unrealistic, so should be taken with a grain of salt.
Other methods can be applied directly to real data, but require
that anatomical ground truth be provided, typically involving
annotation by an expert. This makes validation expensive and
prone to subjective error. In 3-D, matters become ever more
complex. As the correct solution – that which is often based on
anatomy – is indeed hard to obtain, NRR assessment without
ground truth appears highly valuable.

We consider appearance model, which have been exten-
sively used as the basis for interpretation by synthesis. Such
models are derived from sets of training images and they
capture statistics about variability within these sets. The model
acquires knowledge from the training images and is able to use
that knowledge in a variety of ways. Any set of images, which
is used to construct an appearance model, is directly related
to the model quality. When the images are not correspondent,
the model is fuzzy and often invaluable. When the images are
properly correspondent, the model is improved.

As NRR aims to bring sets of images to a state of full pixel-
to-pixel correspondence, the output of a good NRR algorithm
builds a good model. We make use of this key observation
and exploit the relationship between models and NRR. We
use existing algorithms from both ends of the problem and
unify them as to benefit from both. The paper presents
a framework for building appearance models automatically
and then evaluating them. In turn, this method enables the
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aessessment of NRR, which requires only the image data, and
can therefore be applied routinely while oblivious to any form
of ground truth. The method relies on the fact that, for a given
a set of registered images, a statistical model of appearance
can be constructed. When the registration is correct, the model
provides the most concise description of the set of images. As
the solution to NRR degrades, so does the performance of
model sythesis. Thus, the quality of registration affects the
quality of the resulting model and the model itself reflects
on the quaility of NRR, which makes evaluation of the two
somewhat mutual.

The remainder of this paper is structured as follows: it
begins by covering background on registration (assessment
in particular) and statistical models. It outlines some existing
NRR assessment methods, explains about the proposed meth-
ods, and presents results which support the ideas behind our
new method. Validation experiments are then performed where
brain models are advertently degraded, by mis-registering their
training set. Our validation results confirm our method to
in tight correlation with ground truth. We show this to be
the case by using a genralised measure of label overlap,
which uses hand-annotated brain anatomy. Lastly, several
registration algorithms are compared to demonstrate one main
application of our approach. We also show that group-wise
registration algorithms produce better results than these of
pair-wise equivalents.

II. BACKGROUND

A. Non-Rigid Registration

Medical image interpretation is a difficult problem due to
the cross-invdividual anatomical variation. Additionally, there
are factors such as the image acquisition error and soft tissue
deformation. In order to perform analyses of medical images,
there needs to be a degree of commonality across these images.
Above all, the images must have spatial relationships between
them identified. Only by identifying these relationship, can a
one-to-one pixel correspondence be obtained. The establish-
ment of inter-image correspondences is made possible owing
to non-rigid registration (NRR).

NRR is a process where images get warped by means
of spatial transformation and their similarity then measured.
Warps are chosen which increase this similarity. A good
registration algorithm is one which is able to select and apply
the ’correct’ composition of warps to the images and is able to
faithfully estimate similarity between images. In the medical
domain, however, there is rarely a soltution which is objective.
There is no single algorithm to solving the NRR problem
either. The different algorithms in existence use a different
objective function. An objective function comprises the way
spatial deformation fields are represented, a similarity measure
of the method for selecting warps to maximise similarity.

Certain algorithms choose to warp one image at a time,
fitting it to the another image in the set, which is known
as the reference image or the template. Other algorithms rid
the registration framweork from bias by comparing any image
with the remainder of the set. The image is then not subjected
to an arbitrary choice os a reference images. As many ways

exist for registration of images, solutions are subjective. Each
NRR algorithm will, in principle, lead to a different result, so
the need to compare the algorithms becomes more apparent.

B. Assessment of Non-Rigid Registration

1) Deformation Fields Recovery:A common approach to
assessment of the results of NRR involves the generation of
test images. Such images are created by taking the original
images and then applying known deformations to them. The
process of evaluation is based on comparison between the
deformation fields recovered by NRR and those which have
originally been applied [18], [20]. This type of approach can
be used to test NRR methods ’off-line’. It cannot, however,
be used to evaluate the results when the method is applied to
real data as part of a registration-based analysis. Moreover,
such artificial deformations fail to resemble real situations
where there is innate anatomical variation, which deformation
are unable to capture. For instance, there may not be a one-
to-one relationship if images were acuired from different
subjects. This property cannot be emulated by any fundamental
deformation field.

2) Overlap-based Assessment:The overlap-based approach
involves measuring the overlap between of anatomical anno-
tations before and after registration. A good NRR algorithm
will be capable of aligning similar image intensities – in
particular these which indicate the location of anatomical
structures. Alignement of image intensities leads to better
overlap between anatomical structures, so the two are closely-
correlated.

Similar approaches involve measurement of the mis-
registration of anatomical regions of significance [10], [12],
and the overlap between anatomically equivalent regions ob-
tained using segmentation. This process is either manual or
semi-automatic [12], [18]. Although these methods cover a
general range of applications, they are labour-intensive and are
often prone to errors. They also rely one’s ability to faithfully
extract anatomical structures from image intensities alone.

This paper explores one such method, which assesseses
registration using the spatial overlap. The overlap is defined
using Tanimoto’s formulation of corresponding regions in the
registered images. The correspondence is defined by labels
of distinct image regions (in this case brain tissue classes),
produced by manual mark-up of the original images (ground-
truth labels). A correctly registered image set will exhibit
high relative overlap between corresponding brain structures in
different images and, in the opposite case – low overlap with
non-corresponding structures. A generalised overlap measure
[6] is used to compute a single figure of merit for the overall
overlap of all labels over all subjects.

O =

∑
pairs, k

∑
labels, l

αl

∑
voxels, i

MIN(Akli, Bkli)

∑
pairs, k

∑
labels, l

αl

∑
voxels, i

MAX(Akli, Bkli)

(1)

wherei indexes voxels in the registered images,l indexes
the label andk indexes the two images under consideration.



[PLACEHOLDER] TRASACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, NOVEMBER 2006 3

Fig. 1. The effect of varying the first, second, and third model parameters
of a brain appearance model by±2.5 standard deviations

Akli and Bkli represent voxel label values in a pair of
registered images and are in the range [0, 1]. TheMIN() and
MAX() operators are standard results for the intersection and
union of a fuzzy set. This generalised overlap measures the
consistency with which each set of labels partitions the image
volume.

The parameterαl affects the relative weighting of different
labels. Withαl = 1, label contributions are implicitly volume
weighted with respect to one another. This means that large
labels contibute more to the overall measure. We have also
considered the cases whereαl weights for the inverse label
volume (which makes the relative weighting of different labels
equal), whereαl weights for the inverse label volume squared
(which gives labels of smaller volume higher weighting) and
where αl weights for a measure of label complexity. We
defined label complexity rather arbitrarily as the mean absolute
voxel intensity gradient in the label.

More formulations of overlap, other than Tanimoto’s, have
also been investigated. Their results were shown to be less
accurate and they are omitted in the interest of brevity.

C. Statistical Models of Appearance

Statistical models of shape and appearance (combined ap-
pearance models) were introduced by Cootes, Edwards, Lanitis
and Taylor [2], [3], [9]. They have been applied extensively
in medical image analysis [11], [16], [22] among other related
domains. Brain morphometry has been one main point of
focus while cardiac imaging incorporated a third and fourth
dimension, which was a time series [21].

The construction of an appearance model depends on estab-
lishing a dense correspondence across a training set of images
using a set of landmark points marked consistently on each
training image.

Using the notation of Cootes [3], the shape (configuration

of landmark points) can be represented as a vectorx and the
texture (intensity values) represented as a vectorg.

The shape and texture are controlled by statistical models
of the form

x = x + Psbs

g = g + Pgbg
(2)

wherebs are shape parameters,bg are texture parameters,x
andg are the mean shape and texture, andPs andPg are the
principal modes of shape and texture variation respectively.

Since shape and texture are often correlated, we can take
this into account in a combined statistical model of the form

x = x̄ + Qsc
g = ḡ + Qgc

(3)

where the model parametersc control the shape and texture
simultaneously andQs, Qg are matrices describing the modes
of variation derived from the training set. The effect of varying
one element ofc for a model built from a set of 2D MR brain
image is shown in Figure 1.

To generate the positions of points in an image we use

X = Ttx (4)

where x are the points in the model frame,X are the
points in the image, andTtx applies a global transformation
with parameterst. For instance, in 2D,Ttx is commonly
a similarity transform with four parameters describing the
translation, rotation and scale.

The texture in the image frame is generated by applying a
scaling and offset to the intensities,gim = Tgtransg whereu
is the vector of transformation parameters.

D. The Correspondence Problem

A very key step in construction of combined appearance
models is that of identifying dense correspondence across a
given set of training images. This is often achieved by marking
up the training set by hand, simply identifying significant
points in the images and interpolating between these points.
In recent years, automation of this process was a problem of
great interest. Denser correspondence, which is also accurare,
builds a better model. However, that dense correspondence is
arduous to obtain. In 3-D, identification of correspondences
is hard to obtain objectively. More points of correspondence
must be identified as well.

One approach to solving this problem authomatically is to
use NRR and bring the images to alignment by optimising
a similarity measure [11], [16]. A different approach refines
initial estimates of the correspondence so as to code the set of
images in the most efficient way [1]. We have recently outlined
an approach which is based on optimising the total description
length of the training set, using its model [23]. A model will
be most concise when its training set is fully correspondent.

In Section IV our approach is validated by deliberately
perturbing the correspondence in models, i.e. decreasing the
registration. Such models were built using manual annotation
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that establishes a reliable correspondence. In Section V our ap-
proach is used to compare common registrations methods [11],
[16], as well as our minimum description length approach.

III. E VALUATION METHOD

This section presents the evaluation method which can as-
sess NRR in a model-based fashion. More broadly, it explains
the use of the approach for evaluation of appearance mod-
els, which is turn makes ground-truth-free NRR assessment
possible.

A. Specificity and Generalisation

Our approach to model evaluation is based on directly
measuring key properties of a given model. An effective model
is one which is able to generate a broad range of example of
the class of modelled images. This property is referred to as
Generalisation ability. This property is not sufficient since the
model must also generate examples that areconsistentwith
the class of modelled images. This property is referred to as
Specificity.

Our approach to the assessment of NRR relies on the
close relationship between registration and statistical model
building, and extends the work of Davieset al. on evaluating
shape models [8]. We note that NRR of a set of images
establishes the dense correspondence which is required to
build a combined appearance model. Given the correct cor-
respondence, the model provides a concise description of the
training set. As the correspondence is degraded, the model
also degrades in terms of its ability to reconstruct images of
the same class, not in the training set (Generalisation), and its
ability to only synthesise new images similar to those in the
training set (Specificity). If we represent training images and
those synthesised by the model as points in a high dimensional
space, the clouds represented by training and synthetic images
ideally overlap fully (see Figure /refhyperspace). Given a
measure of the distance between images (as described in the
next subsection), Specificity,S, Generalisation,G, and their
standard errorsσS andσG can be defined as follows:

Let {Ia(X0) : a = 1, ...m} be a large image set which has
been sampled from the model and has the same distribution
as the model. The distance between two images is described
by | · | which allows us to define:

G =
1
n

n∑
i = 1

minj |Ii − Ij |, (5)

S =
1
m

m∑
j = 1

mini |Ii − Ij |. (6)

σG =
SD(min j |Ii − Ij |)√

n − 1
, (7)

σS =
SD(min j |Ii − Ij |)√

m − 1
. (8)

where{Ij : j = 1..m} is a large set of images sampled from
the model,| · | is the distance between two images and SD is
standard deviation.

Fig. 2. The model evaluation framework: A model is constructed from the
training and images are generated from the model. Each image is vectorised
embedded in hyperscape. Many such points can be visualised as a cloud.

Fig. 3. Representation in hyperspace of the model metrics calculation method

Both values are low for a good model. Specificity measures
the mean distance between images generated by the model
and their closest neighbours in the training set, whilst Gener-
alisation measures the mean distance between images in the
training set and their closest neighbours in the synthesised set.
The approach is illustrated diagrammatically in Fig. 3.

B. Entropic Graphs

According to our definition of Specificity and Generali-
sation, only nearest image distances are accounted for. This
prevents us from attaining a robust measure that is dependent
upon the set of images as a whole. We then come to consider
K nearest neighbours (kNN) whereinseveralmatches that are
near contribute to the measure. As image distances can be
perceived as a graph with a network of distances between
nodes, we make use entropic graphs as proposed by Heroet
al. [13]. Rather than dealing with two isolated and reciprocal
measures like Specificity and Generalisation, overlap between
the data cloud can be estimated using an approxmation of
Shannon’s entropy. We adopt Jensen’s dissimilarity measure,
which is defined thus

xxxx formula xxxx
where ...
In our experiments, Minimal spanning tree (MST) with one

nearest node.
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Fig. 4. Specificity, Generalisation and graph entropy and their corresponding
error bars for degraded registration

Fig. 5. The calculation of a shuffle difference image

The results indicate that entropy is by all means a good
surrogate of Specificity and Generalisation. We also consider
it to be a more principled way of meausring such value and
it incoprporated normalisation. See Fig. 4.

C. Measuring Distances in Between Images

The most straightforward way to measure the distance
between images is to treat each image as a vector formed by
concatenating the pixel/voxel intensity values, then take the
Euclidean distance. Although this has the merit of simplicity,
it does not provide a very well-behaved distance measure since
it increases rapidly for quite small image misalignments. This
observation led us to consider an alternative distance measure,
based on the ’shuffle difference’, inspired by the ’shuffle
transform’ [14]. The idea is illustrated in Figure 5. Instead of
taking the sum of squared differences between corresponding
pixels, the minimum absolute difference between each pixel in
one image and the values in a shuffle neighbourhood around
the corresponding pixel is used. This is less sensitive to small
misalignments, and provides a more well-behaved distance
measure.

On several occassions, we also considered the symmetrical
shuffle distance (Figure 6, which applies the shuffle transform
in both direction and averages over the two products. We
noted that it entailed no significant improvement. Therefore,
experiments in the remainder of this paper choose one image
and compute the shuffle distance in just one direction, which
is efficient.

IV. VALIDATION OF THE APPROACH

A. Annotated Brain Data

The overlap-based and model-based approaches were vali-
dated and compared, using a dataset consisting of 36 transaxial
mid-brain slices, extracted at equivalent levels from a set of
T1-weighted 3D MR scans of different subjects. Brain images
were annotated with eight tissue classes including gray, white
matter, the caudate nucleus and CSF (both left and right)

Fig. 6. An example of the shuffle difference image from one image to
a second image (left), from the second image to the first (centre), and the
symmetrical shuffle distance image (right)

Fig. 8. An example brain image and its accompanying anatomical labels,
which include the whitematter, graymatter, caudate nucleus, and lateral
ventricle

that provided the ground truth for image correspondence.
Initially, the images were brought into alignment using an
NRR algorithm based on the MDL optimisation.

B. Perturbing Ground Truth

A test set of different registrations was then created by
applying smooth pseudo-random spatial warps (based on
biharmonic Clamped Plate Splines) to each image in the
registered set. Each warp was controlled by 25 randomly
placed knot-points, each displaced in a random direction by
a distance drawn from a Gaussian distribution whose mean
controlled the average magnitude of pixel displacement over
the whole image. Registration quality was measured, for each
level of registration degradation (perturbation), using several
variants of each of the proposed assessment methods.

Overall, the above approach was applied 10 times using
10 different random seeds to ensure that both methods are
consistent and the results unbiased. The 10 different warp
instantiations were generated for each image for each of seven
progressively increasing values of average pixel displacement.
Figure 9 provided examples from the data as perturbation
extent is increased.

C. Validation Results

Results of the proposed measures for increasing registration
perturbation are shown in Figures 11 and 12. Note that
Generalisation and Specificity plotted for different shuffle
neighbourhood radius are in error form, i.e. they increase with
decreasing performance. Also shown are Figure 10 results
from the overlap-based measure, which computes the measure
that is based on ground truth.
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Fig. 7. A comparison between shuffle distance evaluation types. On the left: original image; on the right: warped image; in the centre (from left): shuffle
distance withr = 0(absolute difference),1.5, 2.9 and3.7.

Fig. 9. Examples of registration degradation for increasing scales of smooth
CPS warps. Mean pixel displacement for each image is shown at its top.

All metrics are generally well-behaved and show a mono-
tonic decrease in registration performance. Such results di-
rectly validate the model-based metrics, which are shown be
in agreement with the ground truth embodied in the region
overlap based measure.

1) Effects of the Shuffle Transform:The experiment de-
scribed in the previous section was repeated for shuffle neigh-
bourhoods of 1x1 (Euclidean distance), 3x3, 5x5, and 7x7, to
test the hypothesis that this would extend the range over which
different degrees of mis-registration could be discriminated.

2) Overlap-based Assessment Eighting Variants:hmph.

V. A PPLICATIONS OF THEAPPROACH

A. Comparing Different Methods of NRR

A common task in medical image analysis is the estima-
tion of correspondences across a group of images, to allow
mapping of effects into a common co-ordinate frame when
performing population studies. A widely used approach is to
use a non-rigid registration algorithm to map a chosen refer-
ence image onto each example, defining the correspondence

Fig. 10. Overlap (with corresponding error bars) of brains as their registration
degrades

Fig. 11. Generalisation (with corresponding error bars) of brains as their
registration degrades
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Fig. 12. Specificity (with corresponding error bars) of brains as their
registration degrades

across the group [16]. However, it has been argued [5] that
this pairwise approach does not take advantage of the full
information in the group, and thus may lead to sub-optimal
registration. We have been investigatinggroupwisemethods
of registration which aim to make the best use of the group as
a whole when estimating the correspondence. We work within
a minimum description length (MDL) framework. The aim is
to construct a statistical appearance model which can exactly
synthesize each example in the training set as efficiently as
possible [23]. It has been observed that the more the compact
the representation, the better the correspondences. The general
approach is to define a deformation field between reference
frame and each training image. For a given choice of sets of
fields, one can compute the cost of encoding the images (a
combination of the coding cost of the model, the cost of the
parameters and the cost of residuals between the synthesized
images and the training images). The effect on this total
description length of modifying the deformation fields can
be evaluated - the correspondence problem becomes a (very
high dimensional) optimisation problem. Within this general
framework we compare three different approaches (for details
see [23]):

1) Pairwise registration, using the first image as a reference
2) Groupwise registration in which the reference model is

just the current mean of the shape and intensities across
the training set, and no constraints are placed on the
deformations

3) Groupwise registration to the mean including a term
encouraging a compact representation of the set of
deformations.

Though the algorithms will work in 3D, for the evaluation
experiments we concentrate on a 2D implementation (allowing
more large-scale experiments to be performed). We have a
dataset of 104 3D MR images of normal brains1 , which

1The age matched normals in a dementia study generously provided by X
(anonymised).

Fig. 13. The calculation of sensitivity for assessment metricss, e.g. overlap,
Generalisation and Specificity.

Fig. 14. Sensitivity of differnent NRR assessment methods

have been affine aligned and a single slice at equivalent
location extracted from each. Fig. 5 (left) shows examples of
extracted slices. In order to evaluate the different registration
algorithms outlined above, we register the 104 2D slices using
the different techniques, construct statistical models from them
and calculate the specificity and generalisation measures.

The results of assessing the generalisation and specificity for
each of the three models is shown in Fig. 9. This shows that
the full groupwise method is better than the partial method
(without shape constraints), which in turn is better than a
simple pairwise approach. The evaluation technique allows
us to compare different algorithms and make quantitative
judgements on the effect of different approaches.

B. Results

The results of the experiment to test the effect of increasing
mis-registration were shown in Figure 11 and Figure 12. These
demonstrates that, for all sizes of shuffle neighbourhood, the
specificity and generalisation values increase (get worse) with
increasing mis-registration.

The results for different sizes of shuffle neighbourhood
demonstrate that the range of mis-registration over which
distinct values of specificity and generalisation are obtained
increases as the neighbourhood size increases.

The results of the comparison between three different
methods of NRR are shown in Figure XXXXX These show
that, particularly in terms of specificity, we can distinguish
between the three approaches, with the fully groupwise method
performing best, as anticipated. A model built using this
approach is shown in Figure XXX.

VI. COMPARING NRR ASSESSMENTMETHODS

A. Sensitivity Measures

Equation - deltas.......
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Fig. 15. The first mode of an appearance model of the brain whose training
set was subjected to deformation.±2.5 standard deviations are shown.

Fig. 16. Appearance model which was built automatically by group-wise
registration. First mode is shown,±2.5 standard deviations.

VII. A SSESSING ANDCOMPARING NRR ALGORITHMS

To compare methods of NRR we took 104 brain volume
Slided through them after affine registration Registered using
different algorithms

VIII. D ISCUSSION ANDCONCLUSIONS

We have introduced a model-based approach to assessing
the accuracy of non-rigid registration, without the need for
ground truth. The validation experiments, based on perturbing
correspondences obtained using ground truth, show that we
are able to detect increasing mis-registration using just the
registered image data. The results obtained for different sizes
of shuffle neighbourhood show that the use of shuffle distance
rather than Euclidean distance improves the range of mis-
registration over which we can detect significant changes in
registration accuracy. We have also shown that the approach
is capable of detecting statistically significant differences in
registration accuracy between three different (plausible) ap-
proaches to NRR.

We believe that this represents an important advance in the
assessment of NRR, because it establishes an entirely objective
basis for evaluating the reliability of NRR-based experiments,
and for comparing the performance of different methods of
NRR. The fact that no ground truth data is required means that
the method can be applied routinely. Further work is needed
to compare the results obtained using our new approach with
those obtained using more sophisticated segmentation-based
methods of evaluation.

Fig. 17.

Fig. 18. Specificity and generalisation of the three registration methods

APPENDIX I
DERIVATION OF....

Appendix one text goes here.

APPENDIX II

Appendix two, if exists, goes here.
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