
A Unified Information-Theoretic Approach to
Groupwise Non-Rigid Registration and Model

Building.

Carole J. Twining1, Tim Cootes1, Stephen Marsland2, Vladimir Petrovic1,
Roy Schestowitz1, and Chris J. Taylor1

1 Imaging Science and Biomedical Engineering (ISBE),
Stopford Building, University of Manchester, Manchester, U.K.

2 Institute of Information Sciences, Massey University,
Private Bag 11222, Palmerston North, New Zealand.

Abstract. The non-rigid registration of a group of images shares a
common feature with building a model of a group of images: a dense,
consistent correspondence across the group. Image registration aims to
find the correspondence, while modelling requires it. This paper presents
the theoretical framework required to unify these two areas, providing a
groupwise registration algorithm, where the inherently groupwise model
of the image data becomes an integral part of the registration process.

The performance of this algorithm is evaluated by extending the concepts
of generalisability and specificity from shape models to image models.
This provides an independent metric for comparing registration algo-
rithms of groups of images. Experimental results on MR data of brains
for various pairwise and groupwise registration algorithms is presented,
and demonstrates the feasibility of the combined registration/modelling
framework, as well as providing quantitative evidence for the superiority
of groupwise approaches to registration.

1 Introduction

Over the past few years, non-rigid registration has been used increasingly as a
basis for medical image analysis. Applications include structural analysis, atlas
matching and change analysis. There are well-established methods for pairwise
image registration(for a review, see e.g., [12]), but often it is necessary to reg-
ister a group of images. This can be achieved by repeatedly applying pairwise
registration, but there is no guarantee that the solution is unique – depending on
the choice of reference image, representation of warp, and optimisation strategy,
many different results can be obtained for the same set of images. Clearly, this
does not form a satisfactory basis for analysis.

In this paper we consider non-rigid image registration as a complementary
problem to that of modelling a group of images [2]. A statistical model of a group
of images requires that a dense correspondence is defined across the group, which
is precisely what non-rigid image registration provides. The key idea explored
in this paper is that the best correspondence is that which generates the best
model of the data. Building on the optimal shape model approach of Davies et
al [3], we define a minimum description length (MDL) criterion for image model



quality. We show that a unique correspondence can be defined across a group of
images by minimising, explicitly, an MDL objective function.

The combination of non-rigid image registration with modelling was shown
previously by Frangi et al. [5], who used non-rigid registration to automatically
construct 3D statistical shape models of the left and right ventricles of the heart.
However, their method did require an initial manual labelling of every image in
the training set. As regards groupwise non-rigid registration, several authors
have considered the problem of choosing the best reference image. For instance,
Bhatia et al [1] use a fixed intensity reference picked from the training set, but
select the spatial frame of the reference so that the sum of deformations from this
spatial reference frame is zero. Davis et al [4] concentrate specifically on deriving
the most representative template image for a group of images, using sum-of-
squared difference on the space of image discrepancies, and a metric on the
diffeomorphism group of spatial deformations. Each of these approaches involve
defining a series of independant criteria for what constitutes image matching,
how image deformation is weighted against spatial deformation and so on. The
advantage of our approach is that we use a single criterion – minimum description
length – which can in principle determine not just the groupwise correspondence
across the set of images, but also the optimal spatial reference frame, the optimal
reference image and, potentially, the optimal model parameters (e.g., number of
modes of the model retained). It hence combines registration and modelling
within a single framework.

In this paper, we present a full description of our framework for groupwise
registration, defining the MDL objective function and showing how the optimi-
sation can be performed in a principled way by moving between different frames
of reference. We validate the MDL objective function experimentally, using a set
of annotated 2D MR brain slices. We also address the problem of evaluating dif-
ferent groupwise correspondences, by defining the generalisabilty and specificity
of the resulting models. Again, we validate these measures using annotated data.
We use these measures to evaluate the performance of a range of pairwise and
groupwise approaches to registering a set of brain images, and show that the
groupwise approach gives quantitatively better performance than pairwise.

2 Spatial & Pixel/Voxel-Value Transformations

The aim of non-rigid registration is to define a consistent spatial correspondence
across a set of training images. One way to ensure a consistent correspondence is
to define all correspondences w.r.t. a spatial reference frame – the origin of the
space of spatial deformations. We define the following basic notational conven-
tions , taking as our example the simplest case of a spatial warp directly between
a training image frame and a reference frame (see Fig. 1):
• X0 is the regular grid of pixel/voxel positions on which each of our images

is defined.
• R is the spatial frame of the reference. A reference image IR(X0) consists

of the set of values of a function IR, taken at the set of positions X0.
• The set of N training images is denoted by {ITi(X0) : i = 1, . . . N}, where
Ti is the spatial frame of image i, with associated image function ITi .



The dense correspondence between a training image frame Ti and the reference
frame R is defined by a spatial warp ωi : x ∈ Ti 7→ ωi(x) ∈ R. The warp ωi

also induces a mapping between the function spaces (that is, it warps images
between frames). Mathematically, there are two such mappings:

The push-forward: ωi : ITi 7→ Iωi

Ti

.= ωi(ITi), Iωi

Ti
(ωi(x)) .= ITi(x)

The pullback: ω∗i : IR 7→ I∗R
.= ω∗i (IR), I∗R(x) .= IR(ωi(x))

The pullback ω∗i is easier to

Fig. 1: A spatial warp ωi from training frame Ti to
reference frame R. X0 (black filled circles) is the
set of regular voxel positions, with the grey filled
circles being the warped voxel positions ωi(X0).

compute, since we resample IR in
R from the regular grid X0 to the
irregular, warped grid ωi(X0) to
obtain I∗R(X0) in Ti, whereas the
push-forward mapping entails re-
sampling Iωi

Ti
in R from the irreg-

ular grid ωi(X0) to the regular
grid X0, which is computation-
ally more expensive. So, in what
follows, we will use the pullback
mapping wherever possible, where the direction of flow of image information is
in the opposite direction to that of the spatial mapping.

Once we can map images between frames, we can compare images. We will
denote a general image-difference/discrepancy-image by ∆I. So, in the example
above, if we define a discrepancy image in the frame Ti:

∆ITi(X0) = ITi(X0)− I∗R(X0) =⇒ (∆ITi ◦ ω∗i )IR(X0) ≡ ITi(X0), (1)

where (∆ITi ◦ ω∗i ) is taken to denote the composition of a pullback mapping
ω∗i and a voxel-value deformation ∆ITi(X0). The pixel/voxel-value deformation
in this case is defined such that when applied to the warped reference image
I∗R(X0) it exactly recreates the training set image ITi(X0). It is important to
note that in general these two classes of transformations do not commute. We
now have a general class of image deformations, composed of a spatial part and
a discrepancy image part – we will denote such a general combined deformation
by capital greek letters (e.g., Ωi).

A more complicated situation is shown in Fig. 2. This shows the reference
image being transformed into a training image ITi , by a sequence of two combined
transformations Υi then Ωi. We take this approach since, if we are to model
combined transformations across the group of images, we need them to be applied
in a common frame. So, the spatial transformations {υi} and the discrepancy
images {∆iIR} are all applied in the reference frame R, hence can be modelled
across the group. However, the direction of the spatial warp υi is now in the same
direction as the combined warp Υi (the direction of flow of image information),
which means that Υi no longer has the simple form given above, but is given by:

Υi = υi ◦∆iIR, (2)

which uses the push-forward mapping υi as applied to images, rather than the
easier-to-compute pullback. The spatial warp ωi is now just from the training



frame Ti to the intermediate frame Mi, the corresponding combined warp Ωi

being constructed using the pullback ω∗i and the discrepancy image ∆ITi , which
is calculated in a manner analogous to (1), but with the intermediate image IMi

taking the place of the reference image IR. This second combined transformation
is included because in general the groupwise-modelled transformation will not
completely represent the total required transformation.
3 The Objective Function
As we explained in the Introduction, we have chosen to define the optimal group-
wise non-rigid registration as that which minimises an objective function based
on the minimum description length (MDL) principle [7].

The basic idea behind MDL is that we consider transmitting our dataset to
a receiver, encoding the dataset using some model1. Using the structure and
notation defined in the previous section, the data we have to transmit is the
reference image IR and the set of combined deformations {Υi, Ωi} that enable
us to exactly reconstruct each training image. Optimising the description length
means in principle finding:
• The optimal reference image IR(X0) and optimal reference frame R.
• The optimal set of combined transformations {Υi, Ωi} via:

– The optimal groupwise encoding of the deformations that act in a com-
mon frame, that is, the optimal groupwise model of the set {Υi},

– Encoding of the residual deformations {Ωi}, which do not act in a com-
mon frame.

The total description length can hence be decomposed thus:

Ltotal = LR(R, IR) +Lparams +Lgroup({Υi}) +Lresiduals({Ωi})
Reference frame
& reference image

Parameters of
groupwise model

Encoded using
groupwise model

Encoded residuals

(3)

1 Note that in this paper, we use ‘model’ in two senses – in terms of an encoding
model, which can be something very simple, such as a flat distribution over a known
range, and in terms of a groupwise model, explicitly constructed to fit the data.

Fig. 2: Top: The spatial transformations (black arrows) between reference, intermediate
and training image frames for one image i in the training set. Bottom: The corresponding
combined (spatial and voxel-intensity) transformations (broad grey arrows) between images.



Actual description lengths are computed using the fundamental result of Shan-
non [9] – if there are a set of possible, discrete events {A} with associated
encoding-model probabilities {pA}, then the optimum code length required to
transmit the occurrence of event A is given by:

LA = − ln pA nats? (4)

The encoding lengths for unsigned and signed integers are calculated thus:

LZ+(n) =
1
e

+ ln(n) nats, n ∈ Z+, LZ(n) =
2
e

+ ln(n) nats, n ∈ Z. (5)

As an example, consider the description length for transmitting a discrepancy
image ∆I(X0) according to the image histogram. The NI = size(X0) voxels of
the image are taken to be integers in the range [−Nrange, . . . Nrange], Nm voxels
having the value m. The associated model probability is then p(m) = Nm

NI
. The

description length is :
(6)

LHist(∆I) =− ∑
m, Nm>0

ln
(

1
2Nrange+1

)
+

∑
m, Nm>0

LZ+(Nm) − ∑
x∈X0

ln p(∆I(x)).

Positions of occupied bins Bin Occupancies Encoded Data

See [11, 10] for further details.

4 The Algorithmic Framework

4.1 Initialisation
In [10], an algorithm was presented to find an initial correspondence using MDL.
The structure of the algorithm followed that shown in Fig. 1. The free variables
were the set of spatial warps {ωi}, initialised to the identity I, and the reference
image was taken to be the mean of the training images, pulled-back using the
inverses {ω−1

i }:
IR(X0) =

1
N

N∑

i=1

[
ω−1

i

∗
(ITi)

]
(X0). (7)

This algorithm was fully groupwise, in that changes to any of the {ωi} change
the reference, hence change the description length for all of the images in the set.
However, the calculation of the inverse warps (or alternatively the push-forward
mappings generated by {ωi}) is computationally expensive.

We propose here a computationally cheaper initialisation algorithm, within
the structure shown in Fig. 2. We keep the idea from the algorithm presented
in [10], of initial image estimates based on averages of pushed-forward training
images, but instead choose to populate the intermediate images, using the leave-
one-out means:

IMi(X0) =
1

N − 1

∑

j 6=i

[ω−1
j

∗
(ITj )](X0), (8)

with {υi = I}. We do not explicitly assign a value to the reference image. But
we would expect the intermediate images to mutually converge as the algorithm
progresses and the images are brought into alignment, so that {∆iIR 7→ ∅}.
? The nat is the analogous unit to the bit, but using a base of e rather than base 2.



Algorithm 1 : MDL NRR Initialisation
1: {ωi = I, i = 1, . . . N} %:Initialize warps to the identity.

2: Repeat
3: Randomize the order of the set of training images ITi(X0), indexed by i.
4: For i = 1 to N do
5: Optimise Linit({ωk}) w.r.t. spatial warp ωi.
6: Update Intermediate Images {IMj (X0) : j 6= i}. %:Using equation (8).

7: End
8: Until convergence

So, we estimate the true description length thus:
(9)

Linit({ωi}) = 1
N

∑
i

LHist(IMi
(X0)) +

∑
i

L(ωi) +
∑
i

L(∆ITi
(X0)).

Estimate of LHist(IR(X0)) Spatial Warps Discrepancy Images

The pseudocode for the initialisation algorithm is given in Alg. 1. Note that
the update of the Intermediate images {IMi(X0)} (line 6) can be carried out
less-frequently than at every training image, if required.

4.2 Groupwise Models

We have shown how to initialise the registration algorithm, within the struc-
ture shown in Fig. 1. However, when it comes to building groupwise models, we
have the structure shown in Fig. 2. One method would be to build some default
generative model of the set of deformations {Υi}, and then search within the
space of this model. However, this approach suffers from two drawbacks; firstly,
the use of a default model (such as a gaussian) would bias the results, since
it would tend to force the deformations to have a gaussian distribution, rather
than finding the best deformations. The second drawback is computational – if
we alter Υi, we have to then re-calculate Ωi so that the combined deformation
does indeed re-create our target training image ITi(X0). This means that we
have to re-calculate the intermediate image IMi(X0), which means either calcu-
lating a pushforward mapping via υi, or a pushback via υ−1

i , both of which are
computationally expensive.

We take an alternative approach, which is to optimise the {ωi}. As in Alg. 1,
this only involves computing the pullback ω∗i . So, after we have optimised the
set {Ωi}, we then transfer of much of this combined deformation as possible
from the intermediate frame Mi to the equivalent deformation applied in the
reference frame R. We can then construct a model in the reference frame. The
proposed algorithm is given in Alg. 2. Lines 1-5 are just the initialisation stages,
which run the previous initialisation algorithm. The transfer between {Ωi} and
{Υi} is given in lines 2-3 of the function TEST-MODEL. An important point to
note is in line 4 of that function – we maintain the spatial correspondence that
we have previously found, despite moving spatial warps between frames. We
then build a model of the set of combined deformations {Υi = (υi ◦∆iIR)} and
the reference image IR(X0). The modelled deformations are not necessarily the
same as the input deformations to the modelling process, which is the reason for
the resetting in line 5. We then accept this model provided that it decreases the
total description length.



Algorithm 2 : MDL NRR & Groupwise Model Building
1: Run Algorithm 1 %:Output is {IMi

(X0), ωi, ∆ITi
(X0)}

2: υi ⇐ I %:Initial Shared frame for all Intermediate Images

3: IR(X0) ⇐ 1
N

P
i IMi(X0) %:Estimate Reference as Mean

4: ∆iIR ⇐ IMi(X0)− IR(X0) %:Maintain Intermediate Images

Build & Test groupwise model of {Υi ≡ υi ◦∆iIR}
5: (IR, {∆iIR, υi, ωi, IMi , ∆ITI}) ⇐ TEST-MODEL(IR, {∆iIR, υi, ωi})

Main Loop
6: Repeat
7: Repeat
8: Randomize the order of the set of training images ITi(X0), indexed by i

Optimise warps ωi

9: For i = 1 to N do
10: Optimise Ltotal w.r.t. spatial warps ωi. %:Ltotal calculated from eq. (3)

11: End
12: Until convergence

Re-Build Model
13: (IR, {∆iIR, υi, ωi, IMi , ∆ITI}) ⇐ TEST-MODEL(IR, {∆iIR, υi, ωi})
14: Until convergence

Function TEST-MODEL: Build & Test Groupwise Model

1: Lold ⇐ Ltotal(IR, {∆iIR, υi, ωi}) %:Description Length L before modelling, eq.(3)

2: υnew
i ⇐ ω−1

i ◦ υi %:Put all spatial warp into υi

Build Model
3: (Inew

R , {∆new
i IR, υnew

i }) ⇐ MODEL(IR, {∆iIR, υnew
i })

4: ωnew
i ⇐ υnew

i ◦ (υ−1
i ◦ ωi) %:Reset ωnew

i to maintain spatial correspondence

5: Lnew ⇐ Ltotal(I
new
R , {∆new

i IR, υnew
i , ωnew

i }) %:Description Length after modelling

6: If Lnew ≤ Lold then
7: ωi ⇐ ωnew

i , υi ⇐ υnew
i , IR ⇐ Inew

R , ∆iIR ⇐ ∆new
i IR %:Accept new values

8: IMi(X0) ⇐ (υi ◦∆iIR)IR(X0) %:Reset Intermediate Images

9: ∆ITi(X0) ⇐ ITi(X0)− [ω∗i (IMi)](X0) %:Reset discrepancies in Training frame

10: End

5 Implementation Issues

Consider the relation of spatial frames for the groupwise algorithm (e.g., see
Fig. 2 and Alg. 2) – it is clear that we require a description of spatial warps
{ωi, υi} that allows us to efficiently invert and concatenate warps, as well as a
description which allows us to represent a set of warps (i.e.,{υi}) within a com-
mon representation for the purposes of modelling. Such a description is provided
by spline-based formulations which interpolate the movement of general points
from the movement of a set of nodes/knotpoints, where the knotpoints can take
arbitrary positions. In the experiments which follow, we use both the clamped-
plate spline, and an efficient spline based on the piecewise-linear interpolation
of movements across a tesselated set of knotpoints in either 2D or 3D.

The advantages of such a knotpoint based scheme is that it can be applied
in both a multi-resolution and a data-driven fashion. Successive optimisations
of the set {ωi} in Alg. 2 are calculated by adding knotpoints to the previously-
optimised set (hence increasing the resolution of the spatial warp). These knot-



points are also chosen in a data-driven manner (e.g., image features such as
edges, or places of high discrepancy – see [6, 8] for further examples of such
data-driven techniques). This not only increases the computational efficiency
of our implementation but, as will be shown later, also leads to quantitatively
better models. We use a coarse-to-fine strategy during the optimisation – at a
coarse spatial resolution, node movements can be large, and it is sufficient to
use a low-resolution version of the image. As the spatial resolution of the warps
increases, so does the spatial resolution of the image used. The optimisation
scheme for the nodes is a simple gradient descent – points are moved singly to
estimate the gradient direction for the objective function, but moved all at once
using a line search.

6 Model Evaluation Criteria

In order to compare different algorithms for non-rigid registration and model
building, we need to have some quantitative measures of the properties of a given
model. Following Davies et al. [3], we use two measures of model performance:
• Generalisability: the ability to represent unseen images which belong to

the same class as images in the training set.
• Specificity: the ability to only represent images similar to those seen in the

training set.
Let {Ia(X0) : a = 1, . . . N} be some large set of images, generated by the group-
wise model, and having a distribution which is the model distribution. Then we
define the following:

G =
1
N

N∑

i=1

min
w.r.t a

(|ITi(X0)− Ia(X0)|) , Generalisability, (10)

S =
1
N

N∑
a=1

min
w.r.t. i

(|ITi(X0)− Ia(X0)|) , Specificity, (11)

where the distance |·| is a measure of the distance between two images. This could
be taken as the Euclidean distance between images, but this is likely to be very
sensitive to quite small shape changes or misalignments, and thus not provide
a useful measure of image difference. To deal with this problem, we have used
shuffle distance, calculating, for each pixel in one image, the minimum intensity
difference to any pixel/voxel within a radius r of the corresponding pixel/voxel
in the other image. The shuffle distance is then defined as the sum across all
voxels/pixels of the absolute intensity differences, since this is more robust to
outliers than sum-of squares. Note that our definition of G is not that used
in [3], but a form which is symmetric as regards the form of S; G measures how
close each training image is to images in the modelled distribution, whereas S
measures how close each model-generated image is to the training data. Standard
errors for S and G can be defined similarly to Davies et al.

7 Experiments

We have performed experiments to validate our MDL objective function and
model evaluation criteria and investigate the performance of several different



Fig. 3: Left: Two examples of marked-up brains, showing annotation. Right: Total de-
scription length for this dataset as a function of the size of the perturbation of the points.

non-rigid registration methods, including that presented in this paper. Although
all the methods we have described can be used in 3D, it was impractical to run
the very large set of experiments required in the time available, thus we present
results for 2D images of the brain.

7.1 Behaviour of the MDL Objective Function

The first question to be answered is whether the total description length has a
suitable minimum as regards correspondence across a set of images. To investi-
gate this, we took a dataset which consisted of 2D MR image slices; this dataset
had been expertly annotated with 163 points around the skull, ventricles, the
caudate nucleus and the lentiform nucleus (see Fig. 3). The clamped-plate spline
warp between these points then defined dense image correspondence. We applied
a perturbation to the point positions on all the images (independent Gaussian
noise of width σ, 5 trials for each value of σ, with 10 images in the dataset). For
each value of σ, we constructed the corresponding shape and texture models, the
discrepancy between the actual images and the model representations, and hence
calculated the total description length. As can be seen from the Figure, there is
a general trend that as the perturbation increases, so does the total description
length, indicating that the description length does indeed have a minimum in
the vicinity of the annotated correspondence.

7.2 Behaviour of the Model Evaluation Criteria

To validate our Generalisability G (10) and Specificity S (11) criteria, we took
the same dataset and markup as above, but now with 36 examples. As before,
we perturbed the point positions and built the corresponding shape and texture

Fig. 4: Left: Generalisation Ability and Right: Specificity as a function of the size of the
perturbation on the points, for various radii of shuffle distance plus Euclidean distance.
Standard errorbars smaller than markers in all cases.



models. We then generated 1000 examples sampled from each model p.d.f., and
calculated G and S. The results for various values of the perturbation width σ,
and different shuffle distances (r), are shown in Fig. 4. It can be seen that both
Generalisability and Specificity increase (get worse) as σ is increased, indicating
that they provide useful independent measures of model quality.

The useful range of response is greater for larger shuffle distances (e.g., the
slope of the 5×5 (r = 2) shuffle distance curve is lower than that of the Euclidian
distance curve). In the automatic model building experiments described below
we used the 5× 5 shuffle distance to calculate G and S.

7.3 Evaluation of Pairwise & Groupwise Registration and Models

To evaluate different methods of non-

Fig. 5: Example images from the brain slice
training set, showing the tessellation.

rigid registration we used a dataset
consisting of 104 2D MR slices of brains
taken from normals; the initial 3D data
set was affinely-aligned, and then the
corresponding slice extracted from each
example. Fig. 5 shows examples of the
slices. In order to compare different
registration strategies, for each tech-
nique we registered the entire set of
104 images and built the statistical
models of shape and appearance given by the found correspondence, using the
nodes/knotpoints used during the registration. We then computed the General-
isability G (10) and Specificity S (11) for each model (generating 1000 model
examples in each case, and using a 5-pixels square sample region for the shuffle
distance), enabling a quantitative comparison of the registration strategies from
which each model was derived. The strategies tested were:

1 Pairwise Registration:
A Image from training set chosen as reference & 16× 16 regular grid of nodes:

i Residuals calculated in reference frame.
ii Residuals calculated in training frame.

B As above, but removing points from the grid in regions of low texture variance.
C Ditto, but moving points to nearby strong edges.

2 Groupwise Registration:
A Registering to Intermediate Images estimated as the leave-one-out means (Alg. 1).
B Registering to Intermediate Images estimated using the leave-one-out models.

Note that for 1, we tried a selection of images from the training set as the
reference, and choose that which gave the best results in terms of the evaluation
criteria. Strategy 2B can be viewed as an approximation to the full algorithm
given in Alg. 2; in the same way that in the initialisation algorithm (Alg. 1) we
estimate the Intermediate Images {IMi} using the leave-one-out mean, in this
case we estimate them by finding the closest fit to the training image ITi using
the shape model built from all the other examples and the current best estimate
of their correspondence. We then optimise the description length of the shape



Fig. 6: Generalisation ability and Specificity for the strategies listed in $7.3 – dark bars
groupwise, light bars pairwise.

Fig. 7: The first two modes of the shape model built using the results of groupwise regis-
tration, acting upon the mean of the texture model.

and texture discrepancies between this model estimate and the training image.
Note that we do not model the texture at this intermediate stage – this is because
in the inner loops of Algs. 1&2, the warps {ωi} at each spatial resolution are
fully optimised, hence can then be modelled, whereas the texture discrepancy is
merely continually reduced. The results of this comparison are given in Fig. 6.

8 Discussion & Conclusions

We have presented a principled framework for groupwise non-rigid registration,
based on the concept of minimum description length. A groupwise model of
shape and appearance is an integral part of the regsitration algorithm, hence the
registration also produces an optimal appearance model. We have given a full
description of a practical implementation of the basic ideas. Another important
contribution is the introduction of objective criteria for evaluating the results of
non-rigid registration, based on the properties of the resulting appearance model.
The results summarised in Fig. 4 show that the method of evaluation we propose
provides a practical method of comparing the quality of different non-rigid regis-
trations. The results summarised in Fig. 3 show that our MDL objective function
behaves as expected, with a minimum for a groupwise correspondence close to
that given by expert manual annotation. the key results are those summarised
in Fig. 6. These show that our groupwise approach achieves better Specificity
than several different pairwise approaches. They also show the importance of
measuring errors in the correct frame of reference. Further work is required to
implement more sophisticated versions of our groupwise approach, and to pro-
vide a more comprehensive set of comparisions to alternative approaches. Our
initial results are, however, extremely encouraging.
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